Introduction to Domain Driven Data Mining
نویسنده
چکیده
The mainstream data mining faces critical challenges and lacks of soft power in solving real-world complex problems when deployed. Following the paradigm shift from ‘data mining’ to ‘knowledge discovery’, we believe much more thorough efforts are essential for promoting the wide acceptance and employment of knowledge discovery in real-world smart decision making. To this end, we expect a new paradigm shift from ‘data-centered knowledge discovery’ to ‘domain-driven actionable knowledge discovery’. In the domain-driven actionable knowledge discovery, ubiquitous intelligence must be involved and meta-synthesized into the mining process, and an actionable knowledge discovery-based problem-solving system is formed as the space for data mining. This is the motivation and aim of developing Domain Driven Data Mining (D3M for short). This chapter briefs the main reasons, ideas and open issues in D3M. 1.1 Why Domain Driven Data Mining Data mining and knowledge discovery (data mining or KDD for short) [9] has emerged to be one of the most vivacious areas in information technology in the last decade. It has boosted a major academic and industrial campaign crossing many traditional areas such as machine learning, database, statistics, as well as emergent disciplines, for example, bioinformatics. As a result, KDD has published thousands of algorithms and methods, as widely seen in regular conferences and workshops crossing international, regional and national levels. Compared with the booming fact in academia, data mining applications in the real world has not been as active, vivacious and charming as that of academic research. This can be easily found from the extremely imbalanced numbers of pubLongbing Cao School of Software, University of Technology Sydney, Australia, e-mail: [email protected].
منابع مشابه
Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملDomain Driven Data Mining Challenges Prospects
The data driven mining technology was applied in the most of the existing behavior here we assume the strategy of domain driven data mining and utilize Real word business requirements and problems are and prospects. Data driven business world is heading—and what challenges and opportunities CEOs see in 80% place data mining and analysis as the second-most their organization's growth prospects. ...
متن کاملA comparison between knowledge-driven fuzzy and data-driven artificial neural network approaches for prospecting porphyry Cu mineralization; a case study of Shahr-e-Babak area, Kerman Province, SE Iran
The study area, located in the southern section of the Central Iranian volcano–sedimentary complex, contains a large number of mineral deposits and occurrences which is currently facing a shortage of resources. Therefore, the prospecting potential areas in the deeper and peripheral spaces has become a high priority in this region. Different direct and indirect methods try to predict promising a...
متن کاملThe Evolution of KDD: towards Domain-Driven Data Mining
Traditionally, data mining is an autonomous data-driven trial-and-error process. Its typical task is to let data tell a story disclosing hidden information regarding a business issue. Driven by this methodology, domain intelligence is not necessary in targeting the demonstration of an algorithm. As a result, very often knowledge discovered is not generally interesting to business needs. However...
متن کاملReview of Domain Driven Data Mining
This paper presents a review of three papers based on Domain Driven Data Mining. In the first paper [1], Domain Driven Data Mining is proposed as a methodology and a collection of techniques targeting domain driven actionable knowledge delivery to drive Knowledge Discovery from Data (i.e. KDD) toward enhanced problem-solving infrastructure and capabilities in real business state of affairs. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009